62 research outputs found

    Periodic orbits from Δ-modulation of stable linear systems

    Get PDF
    The �-modulated control of a single input, discrete time, linear stable system is investigated. The modulation direction is given by cTx where c �Rn/{0} is a given, otherwise arbitrary, vector. We obtain necessary and sufficient conditions for the existence of periodic points of a finite order. Some concrete results about the existence of a certain order of periodic points are also derived. We also study the relationship between certain polyhedra and the periodicity of the �-modulated orbit

    Second-order SM approach to SISO time-delay system output tracking

    Get PDF
    A fully linearizable single-input-single-output relative-degree n system with an output time delay is considered in this paper. Using the approach of Pade approximation, system center approach, and second-order sliding-mode (SM) control, we have obtained good output tracking results. The Smith predictor is used to compensate the difference between the actual delayed output and its approximation. A second-order supertwisting SM observer observes the disturbance in the plant. A nonlinear example is studied to show the effect of this methodology

    Pattern Reduction in Paper Cutting

    Get PDF
    A large part of the paper industry involves supplying customers with reels of specified width in specifed quantities. These 'customer reels' must be cut from a set of wider 'jumbo reels', in as economical a way as possible. The first priority is to minimize the waste, i.e. to satisfy the customer demands using as few jumbo reels as possible. This is an example of the one-dimensional cutting stock problem, which has an extensive literature. Greycon have developed cutting stock algorithms which they include in their software packages. Greycon's initial presentation to the Study Group posed several questions, which are listed below, along with (partial) answers arising from the work described in this report. (1) Given a minimum-waste solution, what is the minimum number of patterns required? It is shown in Section 2 that even when all the patterns appearing in minimum-waste solutions are known, determining the minimum number of patterns may be hard. It seems unlikely that one can guarantee to find the minimum number of patterns for large classes of realistic problems with only a few seconds on a PC available. (2) Given an n → n-1 algorithm, will it find an optimal solution to the minimum- pattern problem? There are problems for which n → n - 1 reductions are not possible although a more dramatic reduction is. (3) Is there an efficient n → n-1 algorithm? In light of Question 2, Question 3 should perhaps be rephrased as 'Is there an efficient algorithm to reduce n patterns?' However, if an algorithm guaranteed to find some reduction whenever one existed then it could be applied iteratively to minimize the number of patterns, and we have seen this cannot be done easily. (4) Are there efficient 5 → 4 and 4 → 3 algorithms? (5) Is it worthwhile seeking alternatives to greedy heuristics? In response to Questions 4 and 5, we point to the algorithm described in the report, or variants of it. Such approaches seem capable of catching many higher reductions. (6) Is there a way to find solutions with the smallest possible number of single patterns? The Study Group did not investigate methods tailored specifically to this task, but the algorithm proposed here seems to do reasonably well. It will not increase the number of singleton patterns under any circumstances, and when the number of singletons is high there will be many possible moves that tend to eliminate them. (7) Can a solution be found which reduces the number of knife changes? The algorithm will help to reduce the number of necessary knife changes because it works by bringing patterns closer together, even if this does not proceed fully to a pattern reduction. If two patterns are equal across some of the customer widths, the knives for these reels need not be changed when moving from one to the other

    Dengue disease, basic reproduction number and control

    Get PDF
    Dengue is one of the major international public health concerns. Although progress is underway, developing a vaccine against the disease is challenging. Thus, the main approach to fight the disease is vector control. A model for the transmission of Dengue disease is presented. It consists of eight mutually exclusive compartments representing the human and vector dynamics. It also includes a control parameter (insecticide) in order to fight the mosquito. The model presents three possible equilibria: two disease-free equilibria (DFE) and another endemic equilibrium. It has been proved that a DFE is locally asymptotically stable, whenever a certain epidemiological threshold, known as the basic reproduction number, is less than one. We show that if we apply a minimum level of insecticide, it is possible to maintain the basic reproduction number below unity. A case study, using data of the outbreak that occurred in 2009 in Cape Verde, is presented.Comment: This is a preprint of a paper whose final and definitive form has appeared in International Journal of Computer Mathematics (2011), DOI: 10.1080/00207160.2011.55454

    Variable Structure Systems and Systems Zeros

    Get PDF
    The analysis of variable structure systems in the sliding mode yields the concept of equivalent control which leads naturally to a new method for determining the zeros and zero directions of linear multivariable systems. The analysis presented is conceptually easy and computationally attractive

    Sliding mode state observation for nonlinear systems

    No full text
    In this paper a class of non-linear systems with uncertainty and a Lipschitz part is considered. The non-linear part satisfies the Lipschitz condition, whilst the uncertain part is a bounded function. A sliding mode observer is designed to yield feedforward compensation input to stabilize the error estimation system with and without a Lipschitz non-linearity. Sufficient conditions for stability of the Thau observer are also proposed. These conditions ensure the stability of the non-linear observer by selecting a suitable observer gain matrix. In general, when the system contains unmatched uncertainty, ultimate boundedness is obtained. The ultimate boundedness radius depends upon the defined 'distance of the unmatched uncertainty'. Some sufficient conditions may ensure the stability of a non-linear observer for systems with uncertainties
    • …
    corecore